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1. Introduction.

Many problems in geometric probability involve random variables
whose distributions have so far been impossible to find, or, if known,
are intractable. Examples of these are the area A,_ the number of
sides N, and the perimeter L of polygons formed by a howmogeneous
Poisson field of random lines in the blane; or the same variables
for Voronoi polygons, which arise when crystals are grown uniformly
about points in a plane which have been created by a Poisson process
(Crain, 1972). Apart from their intrinsic interest, these polygons
often arise in applied models; Crain gives a number of references
to applications, and discusses the importance of knowing the densities
of the random variables given above. For ﬁany of these, low order
moments can be found even when the densities are not known, and in
this note we suggest a simple approximation to the density using
the first three moments, which has been found to work well in
practice; where some checks are possible, the results are extremely
good. The approximation uses the facts that the typical randomv
variable, say X, is known to be positive, and its density has a
steep tail at the lower values, and a long upper tail for higher
values of X. The density is therefore like a chi-square density,
and statisticians have often approximated X by a random variable
Y such that Y/c has X; distribution; constants ¢ and P are
then found by matching the first two moments of X and Y, though

the ability to fit only two parameters often leads to a very crude
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approximation. If a third moment can be found, the approximation
below can be expected to give much improved results. The method

is to approximate X by
Y= (an®, (1)

where w has the x; distribution.
The values of ¢, p and k are found by equating the cox~
responding moments of Y to those of X. If the first three moments

of X about the origin are 1y, ué, ué s we have
k
U = (2c) T(k+v)/C
2k
Hy = (2c) T (2k+v) /C {(2)

ut = (2¢) %1 (3k+v) 0

W=

where v =p/2 and C=T(v). It is convenient to define

R, = W/u = CT (2k+v) AT (ktv) }2
(3)
3 2 3
Ry = u3/u” = T (3k+v)/{T (k+v) }° .

In fitting the approximation, R2 and R3 are calculated from the
moments of X and are used in (3) to solve for k and v; then
¢ is obtained from the expression for H. Computer routines are
available to perform these operations and then to calculate proba-
bilities of significance points of x2 even with noninteger degrees

of freedom. For work by hand, significance points for x2 with

degrees of freedom differing by 0.2 are given in Pearson and Hartley



(1972). Thus significance points and probabilities for X may be

very easily approximated, since we have
Pix <m0 =202 < M0y (4)

We shall illustrate the approximation on an example where three
moments are exactly khown, and then provide results for several
variables whose higher moments have been found from Monte‘Carlo
studies, but for which there are some theoretical results to

provide a test of accuracy for the approximation.

2. Rreas of random polygons.

Consider a homogeneous Poisson field of random lines in the
plane with intensity barameter T -- that is, if Np is the number

of random lines whose signed distance, p, to the origin is

between - %' and g-, we can write
m
PIN =m] = e-Tx izﬂl— .
P mi

Of interest is the distribution of the areas of the polygons
formed by these random lines in the plane. If A is the area

(0 <A<®, it is known that (Solomon, 1978, Chapter 3)

4 7
m 1l
B@ =%, rah =25, sad) L4 (5)
™ T T

The first three moments of X are u =T, “é = ﬂ4/2, and ué = 4ﬂ7/7.



Solving (2), we have c = 0.70745, p = 1.97085, k = 1.82035. If

X is approximated by the two-parameter cxi + WwWe have ¢ = 6.181,
p = 0.508. 1In Table 1 are given the values of the probability

P(A < x), given by these approximations.

It is possible also to fit a Pearson curve to the distribution
when three moments and the lower end-point are known. The technique
is described and illustrated in Solomon and Stephens (1978). vValues
given‘by the Pearson curve approximation are recorded also in Table 1.
Finally we include results of a Monte Carlo study made some years
ago by Stuart Dufour at Stanford University; 947 polygons were
generated by 65 lines, with T = 1. It can be seen that the Pearson
curve and chi~square approximations agree very well in the upper
tails, and agree to the accuracy available with the Monte Carlo
study. In the lower tail, there is some difference between the
approximations, and the three-parameter chi~-square approximation
is much’the closest to the results of the Monte Carlo study.

Solomon and Stephens (1978) have found other examples in which
this chi-square approximation is very good in the lower tail.
Although the upper tail is the one which would most likely be

used in statistical testing, a good approximation to the density
all along the curve will be required if the density of X is

to be used in further calculations, perhaps in combination with
other random variables. The Pearson curve will usually have a com-
plicated distributional form, so it will certainly not be as
useful in these applications as the three-parameter chi-square

approximation.



It is interesting to gpeculate what E(A4) might be, by try-
ing to fingd a pattern to the sequence whose first three terms are
given in (5) above. a good candidate would appear to be
EAY) = 1% (51%); for T =1 this varue is 74918.25. This
then gives the fourth central moment u4 = 55822, and the kurtosis
of the distribution, measured by 82 = M4/U2 + is 37.0. If the
(cXS)k fit were taken to be accurate, we would have E(Aé) = 107590,
u4 = BB494 and 82 = 58.7; the Pearson curve fit gives u4 = 106833
and 82 = 70.8. Unfortunately, neither approximation strongly
supports the guess given above, and the reader is invited to further

sSpeculation.

3. Number of sides of random polvgons.

The distribution of N, the number of sides of a polygon
formed by the above process, has been obtained from an extensive
simulation study by Roger Miles {personal communication), and was
confirmed in the study made by Dufour. This distribution is of
course discrete, with the lowest value N = 3, and it is known
(see, e.g. Solomon 1978, p. 55) that E(N) = 4 and E(Nz) =
W2/2 + 12 = 16.935. wWe shall approximate the random variable
X=N- 2.5 by a continuous distribution, beginning at x = Q.
The moments of x have been calculated from the Miles' results

and for the three-parameter chi-square approximation, the constants



are c = 1.538, p = 1.68, k = 0.57. The discrete probability for
N = 3 may then be found from the area under the continuous curve
between X = 0 and x = 1, for N =4 by the area between X =1
and X = 2, etc.. The results of the Miles simulation, of the
chi-square approximation, and of a Pearson curve fit, are shown

in Table 2. The results of the approximations are excellent, and
both approximations compare very well for the one value which may
be obtained analytically i.e. P(N = 3) = 2 - w2/6 = 0.3551. The
approximations are not claimed to be accurate to the decimal places
given in Table 2; these are given simply to make the comparison.
The mean of N, from the simulation, is 4.000003, and E(Nz) = 16.9348;
these agree excellently with the theoretical values given above,

It might be pointed out that if one were to rely simply on Monte
Carlo studies to obtain accurate estimates of the probabilities,

many thousands of polygons would be hecessary (Solomon, 1978, P. 55).

4. Perimeter of random polygons.

The density of N above has another application; it can be
used to approximate the density of L, the perimeter of a random
polygon. Let = by 2L/T. It is known that the density of

z = 2Ln/ﬂ, where Ln is the perimeter of a random polygon of

n sides, hasg the xi distribution, where «r is 2(n-2). Thus

let P, be the probability P(N=n), and let fn(z) be the xi



density with r = 2(n-2); if £(z) is the density of =z, we have

. [+
f(z) = I p f (z) . (6)
n=3
It follows that
m N
[ - 2
uk L Pnunk 7
n=3

where uﬁ is the k-th moment about the origin of 2z, and uék
is the k~th moment about the origin of the xi distribution with

br = 2{n-2). The values of ugl, uéz, and u$3 are respectively 1r,

2r + rz, and 8r + 6r2 + r3; then (7) may be used with the results
12 from’Miles' simulations on n, to give the moments of z, - and
hence those of L = mz/2. An immediate result of (7) is that

E(z) = E(x) =2(E(n)-2) = 4, and it may also be shown that

E(z2) = 2ﬂ2 + 8 = 27.739. The calculations described above gave

E{z) = 4.00000954, and E(zz) = 27.73%, remarkably accurate results.
This accuracy, and the accuracy for N above, is a tribute

to the accuracy of the Miles® simulations, and suggests that higher
moments will be very accurate also. The next higher moment is

E(z3) =~ 265.86, and these first three moments were used to approxi-
mate =z Dby both the X2 approximation and the Pearson Curve fit.
When the results for 2z are transformed to results for L we have
the valugs listed in Table 3. The constants in the X2 approximation
for z are c = 3,648, p = 1.743, and k = 0.794; alsc since it

might be expected to be very accurate we list the fourth moment

4 ,
E(z") = 847.061, derived from this approximation. For the same



approximation fitted to a constant multiplier of =z, 1like L, the
constants p and k do not change, but the constant c1 for L

is related to ¢ for 2z by

c K
E@) _ (_i)
T2 S . (8)

Here the left-hand side of (8) is w/2, and ¢y = 6.46l. Thus the
approximation for L has ¢ = 6.461, p = 1.743, k = 0.794.
Simulation studies directly giving the distribution of L were
also made by Dufour; these are the Monte Carlo (M.C.) results in
Table 3. It can be seen that the two approximations give very goecd
agreement with the Monte Carlo values. The Monte Carlo results
(i.e. Prob(L < x) for the eight values of x given) were used
also to provide estimates of the moments of IL; the first three
sample moments about the origin were 6.5625, 71.677, 1031.58,
and these give moments for z: 4.178, 29.05, 266.16, to compare
with those found above using equation (7). The mean is less
accurate than before (recall that E(z) = 4), reflecting, no doubt,
the difference between the size of the Miles and Dufour simulation
studies. However, for interest, the two approximations were fitted
also using the direct estimates; results are given, under (2), in
Table 3. For the X2 fit, c = 28.73, p = 1.14, and k = 0.59.
Thése approximations agree slightly better with the Monte Carlo

results, as might be expected, since the moments were calculated

directly from them; however, the more extensive simulations which



were used to give the Ffirst set of approximations (called (1) in
Table 3), and the excellent match of the mean and variance with
the theory, suggests that approximations (1) will probably be the

better ones.

5. Voronoi polvgons.

Similar questions arise in cbnnection with the distributions
of statistics associated with Voronoi polygons. For the quantifies
A, the area of the polygon, L the perimeter, and N the number
of sgides, only means are known theoreticaliy (Crain 1972). Crain
gives results E(a) = 1/p, E(L/7) = 1/vp, and E(N) = 6, where
P  1is the intensity of the Poisson point process generating the
"centre-points" of the polygons. We shall assume P =1, Crain
gives Monte Carlo results for the statistics, using 11000 values
of N, and 5000 of s and A, and comments that approximations
to the densitites will be of considerable use in hypothesis testing
in varibﬁs disciplines. We therefore give the distributions for
these statistics using the estimated second and third moments for
the approximations. For statistics A and N (Tables 4 and §)
both approximations were used, since the distributions have a chi-
Square shape, but for I (Table 6), which has a distribution like
a normal distribution, énly the Pearson curve fit was used. A

good fit is obtained with the Monte Carlo results, but again we



emphasise that the moments come from these results also. In fact,
Crain's second moment for A (1.24) was used in the fit which
is presented here: he refers to an earlier estimate (1.28), and
when this was used instead of 1.24, a much worse fit resulted.

The parameters in the chi-square approximations are, for A:

c = 0.723,p = 1.855, k = 0.445, and for N: c¢ = 4.457, p = 3.429,

k = 0.485.

6. Comments.

The 3-parameter chi-square approximation, and the Pearson curve
approximation using a known lower endpoint and three moments, have
been fitted to statistics of essentially two types; for the first,
such as A and N for random polygons, either theoretical results
for the moments were known exactly, or such a large number of Monte
Carlo studies had been made that the density could be regarded as
giving exact moments; while for the second type of statistic,
especially those for the Voronoi polygons, the results for moments
other than the mean were found from relatively small Monte Carlo
studies. 1In the first group, and especially when the moments are
exactly known theoretically, we can expect the approximations to ,
give excellent results to the densities. For the second group,
we have demonstrated that one gets an excellent approximation to

the existing Monte Carlo results, indicating that if far more of
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these results were available, a simple approximation (the three-
parameter chi-square approximation) exists for the random variable.
The Pearson curve fit has been included because the agreement
between the two approximations tends to give one confidence that
both are very good, especially in the long upper tail. However
our main purpose has been to suggest the use of the three-moment
chi-square approximation, because of its much greater flexibility;
it will be especially more useful, if the density of the statistic

is to be introduced into further calculations.
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TABLE 1

Approximations to the distribution of A,

the area of a random polvygon.

The table entries are

P{A < ),

for the various approximations.

P.C. = Pearson curve with lower end-point fixed; M.C. Monte Carlo study.
Bpproxi- . 5.05 0.10 0.25 0.50 ©0.75 1.0 2.5 5.0  10.0 15.0
mation:
cx; .272 .324 .408 .485 .535 .574 . 707 .813 .907
P, s .203 . 255 . 345 .431 . 489 .534 .693 .815 .916 . 956
(cx;)k .132 .186 .288‘ . 390 . 460 .514 . 695 .823 .920 . 957
M.C. .13 .18 .27 .38 .45 .50 .67 . B8O .90 .95




TABLE 2

Approximations to the distribution of N, the number of sides of random polygons

The table gives values P(N = n), by simulation (M.C.) and two approximations.

Approxi- . _ 4 5 6 7 8 9 10
mation

M.c.® i .355  .381 .190 .059 .013 .002 .0003 .00003
(c)(;) X . .38 .374 .189 .063 .ols .002  .0003 .00003
P.C. : .353  .377 .191 .06l .016 .002 .0002  .00002

* The exact value for n = 3 ig 0.355066.

RS



TABLE 3

Approximations to the distribution of L, the perimeter of a random polygon.

The table entries are P(L < x). M.C. refers to Monte Carlo results

{(see Section 4). Approximation (1) uses moments calculated from equation
(7) and M.C. results for N; approximation (2) uses moments for I, cal-
culated directly from M.C. results.

Method x: 0.5 1.0 2.5 5.0 7.5 10.0 15.0 20.0

M.C. .05 .11 .26 .51 .67 .79 .92 .98

(cxg)k . 057 .110 . 261 .478 . 649 .775 .919 . 976
(1)

P.C. . 046 .100 - 257 .479 .643 . 775 .920 975

(st)k .052 .109 . 277 . 511 . 682 . 799 . 925 .974
(2)

P.C. . 046 .103 .271 .512 .674
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TABLE 4

Approximations to the distribution of A, the area of Voronoi polygons

The table gives values of P(A < x).

Approxi- . .2 .3 4 1.0 1.2 1.5 2.0
mation

(cx;)k .006 .025 .058 .161 .535 .678 .840 .968
p.C. .004  .020 .052 .155 .538 .675 .838 .967
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TABLE 5

Approximations to the distribution of N, the number of sides of

Voronoi polvgons.

table entries

are P(N = n),.

n: 3 4 5 6 7 8 9 10 11 12

(cx;)k -014  .117  .253  .283 .198 .094 .032 .0076 .0013 .0002
P.C. -012 .116 .256 .280 .200 .096 .036 .0071 .0010 .0001
M.C. -011 .110 .259 .288 .206 .087 .029 .0077 .0014 .0002

17



Approximations to the distribution of u =

TABLE 6

= L/4, where L is the perimeter of

Voronoi polygons.

The table entries are P(u < x) .

.0024 .0048 .0093 .0187 .0346 .0604 . 4586 . 7120 .9959

18



UNCLASSIFIED -

SECURITY CLASSIFICATION OF THIS PAGE rWnen Dato Entered)

' : READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALQG NUMBER
24
4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
Approximations to Densities in Geometr¢c
TECHNICAT, REPORT
Probability , : )
. §. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) . 5. CONTRACT OR GAANT NUNBERA[s)
Herbert Solomon and Michael A. Stephens : DAA029-77-G40031
- PERFORMiNG ORGANIZATIOH NAME AND ADDRESS ) . 10, PROGRA

GRAM ELEMENT, PROJECT, TASK
AREA & WORK UN

Department of Statistics IT NUMBERS

Stanford University

Stanford, CA 94305 | P-1kh35-M

11, CONTROLLING OFFICE NAME AND ADDRESS ) 12. REPORT DATE .
U.S. Army Research Office _ October 27, 1978
Post Office Box 12211 . 13, MUMBER OF PAGES
Ressarch Triangle Park, NC 27709 18 :

14, MONITORING AGENCY NAME & ADDRESS(I ditlerent from Controlling Ottice) | 15, SECURIT\; CL ASS, (of thie rsport)

UNCLASSIFIED

i5a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

18, DISTRIBUTION STATEMENT (of this Repors)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abalract entored In Block 20, if diftsrent from Report)

18. SUPPLEMENTARY NOTES
The findings in this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.
This report partially supported under Office of Naval Research Contract
NOOO1L ~76-C-0k75 (NWR-O42-267) and issued as Technlcal Report No. 26k,

19. KEY WORDS (Continue on roverse alds if necesasary and Identify by black aumbder)

Approximating densities, chi-square approximations, geometric
probability, random polygons, Voronoi polygons.

20. ABSTRACT (Contlnue on reveres slds !f neceasary and identify by dlock mumder)

Please see reverse side.

DD 7305, 1473 eoition oF 1 ov 63 13 omsoLETE UNCLASSIFIED

S/N 0102-014-6601 |

BECURITY CLASBIFICATION OF THIS PAGE (When Date Entered)



PR amrpoent

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGYE (When Dais Enterad)

Many random variables arising in probiems of geometric
probability have intractable densities, and it is very difficult
to find probabilities or pefcentage points based on these
densities. A simple approximation, a generalization of the
chi-square distribution, is suggested. To approximate such
densitiés; the approximation uses the firgtlthree moments.
These may be theoretically derived, or may be obtained. from
Mbnﬁe Carlo sampling.

The approximation is illustratéd on random variables (the

area, the perimeteé, and the number of sides) associated with
random polygons arising from two processes in fhe piane. Where
it can be checked theoretically, the approxiﬁation gives good
results. It is compared also with Pearson curve fits to the

densities.

UNCLASSIFIED
SECURITY CLABMIFICATION OF THIS PAGE(When Data Entered)




